3.对于直线m,n和平面α,β,能得出α⊥β的一个条件是( )
A.m⊥n,m∥α,n∥β B.m⊥n,α∩β=m,n⊂α
C.m∥n,n⊥β,m⊂α D.m∥n,m⊥α,n⊥β
C [⇒⇒α⊥β,故选C.]
[合 作 探 究·攻 重 难]
二面角的概念及求法 (1)下列命题中:
①两个相交平面组成的图形叫做二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b组成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角的最小角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是 ( )
A.①③ B.②④
C.③④ D.①②
B [由二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.所以①不对,实质上它共有四个二面角;由a,b分别垂直于两个面,则a,b都垂直于二面角的棱,故②正确;③中所作的射线不一定垂直于二面角的棱,故③不对;由定义知④正确.故选B.]
(2)如图2320所示,在△ABC中,AB⊥BC,SA⊥平面ABC,DE垂直平分SC,且分别交AC,SC于点D,E,又SA=AB,SB=BC,求二面角EBDC的大小. 【导学号:07742152】
图2320
[解] 因为E为SC的中点,且SB=BC,
所以BE⊥SC.又DE⊥SC,