2019-2020学年人教A版选修2-1 1.3简单的逻辑联结词教案
2019-2020学年人教A版选修2-1  1.3简单的逻辑联结词教案第2页

例如:命题p:菱形的对角线相等且菱形的对角线互相平分。

命题q:三条边对应成比例的两个三角形相似或两个角相等的两个三角形相似。

3、归纳定义

  一般地,用联结词"且"把命题p和命题q联结起来,就得到一个新命题,记作

p∧q

读作"p且q"。

  一般地,用联结词"或"把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作"p或q"。

  命题"p∧q"与命题"p∨q"即,命题"p且q"与命题"p或q"中的"且"字与"或" 字与下面两个命题中的"且" 字与"或" 字的含义相同吗?

(1)若 x∈A且x∈B,则x∈A∩B。

(2)若 x∈A或x∈B,则x∈A∪B。

定义中的"且"字与"或" 字与两个命题中的"且" 字与"或" 字的含义是类似。但这里的逻辑联结词"且"与日常语言中的"和","并且","以及","既...又..."等相当,表明前后两者同时兼有,同时满足, 逻辑联结词"或"与生活中"或"的含义不同,例如"你去或我去",理解上是排斥你我都去这种可能.

说明:符号"∧"与"∩"开口都是向下,符号"∨"与"∪"开口都是向上。

注意:"p或q","p且q",命题中的"p"、"q"是两个命题,而原命题,逆命题,否命题,逆否命题中的"p","q"是一个命题的条件和结论两个部分.

4、命题"p∧q"与命题"p∨q"的真假的规定

  你能确定命题"p∧q"与命题"p∨q"的真假吗?命题"p∧q"与命题"p∨q"的真假和命题p,q的真假之间有什么联系?

引导学生分析前面所举例子中命题p,q以及命题p∧q的真假性,概括出这三个命题的真假之间的关系的一般规律。

例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。

第(2)组命题中,①是假命题,②是真命题,但命题③是真命题。

p q p∧q 真 真 真 真 假 假 假 真 假 假 假 假

p q p∨q 真 真 真 真 假 真 假 真 真 假 假 假     

    (即一假则假) (即一真则真)

一般地,我们规定:

   当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题;当p,q两个命题中有一个是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题。

5、例题

例1:将下列命题分别用"且"与"或" 联结成新命题"p∧q" 与"p∨q"的形式,并判断它们的真假。

(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。

(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;

(3)p:35是15的倍数,q:35是7的倍数.