还以高速火车为例,假设车厢地板上有一个光源,发出一个闪光.对于车上的人来说,闪光到达光源正上方h高处的小镜后被反射,回到光源的位置(如图甲),往返所用的时间为△t′.
对于地面的观察者来说,情况有所不同.从地面上看,在光的传播过程中,火车向前运动了一段距离,因此被小镜反射后又被光源接收的闪光是沿路径AMB传播的光(图乙).如果火车的速度为v,地面观察者测得的闪光从出发到返回光源所用时间记为△t,那么应用勾股定理可得
这又是一个令人吃惊的结论:关于闪光从光源出发, 经小镜反射后又回到光源所经历的时间,地面上的人和车上的人测量的结果不一样,地面上的人认为这个时间长些.
更严格的推导表明,(1)式具有普遍意义,它意味着,从地面上观察,火车上的时间进程变慢了,由于火车在运动,车上的一切物理、化学过程和生命过程都变慢了:时钟走得慢了,化学反应慢了,甚至人的新陈代谢也变慢了......可是车上的人自己没有这种感觉,他们反而认为地面上的时间进程比火车上的慢,因为他们看到,地面正以同样的速度朝相反的方向运动!
(1) 式又一次生动地展示了时间的相对性.
长度的相对性
在这一小节中我们将要说明,高速火车上的一个杆,当它的方向和运动方向平行时,地面上的人测得的杆长要小于火车上的人测得的杆长!
假设一个杆沿着车厢运动的方向固定在火车上,和车一起运动.在火车上的人看来,杆是静止的.他利用固定在火车上的坐标轴,测出杆两端的位置坐标,坐标之差就是他测出的杆长L′.地面上的人要利用固定在地面上的坐标轴,测出杆两端的位置坐标,坐标之差就是他测出的杆长L.可是,对于地面上的人,杆是运动的,要使这种测量有意义,他必须同时测出杆两端的位置坐标;如果在某一时刻测出杆一端的位置坐标,在另一时刻测出另一端的位置坐标,坐标之差就不能代表杆长了.
火车上的人和地面上的人各自用上述方法测量随车运动的杆长,结果发现,L′>L.他们两人的测量都是符合测量要求的,但测量结果不同,这跟同时的相对性有关.地面上的人认s为同时的两个事件(同时对A、B两端读数),火车上的人认为不是同时的.火车上的人认为,地面上的人对B端的读数早些,对A端的读数迟些,在这个时间内杆向前运动了一段距离,因而地面上的人测得的杆长比较短.
(2)式具有普遍意义,也就是说,一个杆,当它沿着自身的方向相对于测量者运动时,测得的长度比它静止时的长度小,速度越大,差别也越大.这就是我们所说的空间的相对性.当杆沿着垂直于自身的方向运动时,测得的长度和静止时一样.
可以想像这样一幅图景:一列火车以接近光的速度从我们身边飞驶而过,我们感到车厢变短了,车窗变窄了......火车越快,这个现象越明显,但是车厢和车窗的高度都没有变化.车上的人有什么感觉呢?他认为车上的一切都和往常一样,因为他和火车是相对静止的.但是,他却认为地面上的景象有些异常:沿线的电线杆的距离变短了,面对铁路线的正方形布告牌由于宽度变小而高度未变竟成了窄而高的矩形......
时空相对性的实验验证
从(l)、(2)两式可以看到,只有当两个参考系的相对速度可与光速相比时,时间与空间的相对性才比较明显.目前的技术还不能使宏观物体达到这样的速度,但是随着对微观粒子研究的不断深入,人们发现,许多情况下粒子的速度会达到光速的90%以上,时空的相对性应该是不可忽略的.事实正是如此.时至今日,不但狭义相对论的所有结论已经完全得到证实,实际上它已经成为微观粒子研究的基础之一.
时空相对性的最早证据跟宇宙线的观测有关(1941年).宇宙线是来自太阳和宇宙深处的高能粒子流,它和高层大气作用,又产生多种粒子,叫做次级宇宙线,它们统称宇宙线.次级宇宙线中有一种粒子叫做μ子,寿命不长,只有3.0μs,超过这个时间后大多数μ子就衰变为别的粒子了.宇宙线中μ子的速度约为0.99c,所以在它的寿命之内,运动的距离只有约890m.μ子生成的高度在100km以上,这样说来宇宙线中的μ子不可能到达地面.但在实际上,地面观测到的宇宙线中有许多μ子,这只能用相对论来解释.