n=(1,1,1),
则|m·n|2=(++)2,
|m|2·|n|2=3[(13a+1)+(13b+1)+(13c+1)]
=3[13(a+b+c)+3]=48.
∵|m·n|2≤|m|2·|n|2,
∴()++)2≤48,
∴++≤4.
[再练一题]
1.设a,b,x,y都是正数,且x+y=a+b,求证:+≥.
【证明】 ∵a,b,x,y都大于0,
且x+y=a+b.
由柯西不等式,知
[(a+x)+(b+y)]
≥2
=(a+b)2.
又a+x+b+y=2(a+b)>0,
所以+≥.
题型二、排序原理在不等式证明中的应用
应用排序不等式的技巧在于构造两个数组,而数组的构造应从需要入手来设计,这一点应从所要证的式子的结构观察分析,再给出适当的数组.
例2已知a,b,c为正实数,求证:a+b+c≤++.
【规范解答】 由于不等式关于a,b,c对称,
可设a≥b≥c>0.于是a2≥b2≥c2,≥≥.
由排序不等式,得反序和≤乱序和,即
a2·+b2·+c2·≤a2·+b2·+c2·,
及a2·+b2·+c2·≤a2·+b2·+c2·.
以上两个同向不等式相加再除以2,即得原不等式.
[再练一题]