(43-3)
(43-3) 式中,为不随时间变化的电阻值, 而为以角频率2ω作余弦变化的电阻值。因此,磁阻传感器的电阻值在弱正弦波交流磁场中,将产生倍
频交流电阻阻值变化。
以锑化铟为例,磁阻在交流磁场下对正弦信号的倍频效应可以形象直观地说明磁场在小于0.06T时,该磁阻器件的特性非常类似于光学二阶非线性效应。与锑化铟器件有类似性质的由四只薄膜合金器件组成的非平衡电桥磁阻传感器已将磁阻器件集成化,并通过附加场的补偿作用使测量区域处于线性区域,更方便地应用于工业、医疗、探矿和军事等领域中。
四、实验内容及步骤
1.在锑化铟磁阻传感器电流或电压保持不变的条件下,测量锑化铟磁阻传感器的电阻与磁感应强度的变化关系,作△R/R(0)与 B 的关系曲线,并进行曲线拟合。实验时注意 GaAs 和 InSb 传感器工作电流应小于 3mA。具体实验步骤如下:
(1)直流励磁恒流源与电磁铁输入端相连,通过调节该直流恒流电源控制电位器改变输入电磁铁电流大小,从而改变电磁铁间隙中磁感应强度的大小。
(2)按图 43-2 所示将锑化铟磁阻传感器与电阻箱串联,并与可调直流电源相接,数字电压表的一端连接磁阻传感器电阻箱公共接点,另一端与单刀双向开关的刀口处相连。
(3)确定通过锑化铟磁阻传感器的工作电流。
(4)通过电磁铁的直流电流逐渐由小增加,读出磁感应强度 B。通过测量锑化铟磁阻传感器两端的电压值。以求得锑化铟磁阻传感器的电阻 R,作出 R与B的关系图。
注:由上述实验数据和曲线得出锑化铟磁阻器件在 B <0.06T 时,△R/R(0)为二次函数。B > 0.12T 时,△R / R (0)为 B 的一次函数,如果要使磁阻器件工作在线性范围内,应使其工作在大于 0.12T强的磁场下,其他的正常磁阻器件也有类似的特性。
2.如图 43-3 所示,将电磁铁的线圈引线与正弦交流低频发生器输出端相接;锑化铟磁阻传感器通以 2.5mA 直流电,用示波器测量磁阻传感器两端电压与电磁铁两端电压构成的李萨如图形如43-4所示,证明在弱正弦交流磁场情况下,磁阻传感器的阻值具有交流正弦倍频特性。