B,C彼此互斥.
P(A∪B∪C)=P(A)+P(B)+P(C)=0.10+0.16+0.30=0.56.
(2)记"至少2人排队"为事件D,"少于2人排队"为事件A∪B,那么事件D与事件A∪B是对立事件,则P(D)=P()=1-[P(A)+P(B)]=1-(0.10+0.16)=0.74.
点评 应用概率加法公式求概率的前提有两个:一是所求事件是几个事件的和,二是这几个事件彼此互斥.在应用概率加法公式前,一定要弄清各事件之间的关系,把一个事件分拆为几个彼此互斥的事件的和,再应用公式求解所求概率.
二、求解"至少"与"至多"型问题
例2 甲、乙、丙、丁四人同时参加一等级考试,已知恰有1人过关(事件A)的概率为0.198,恰有2人过关(事件B)的概率为0.38,恰有3人过关(事件C)的概率为0.302,4人都过关(事件D)的概率为0.084.求:
(1)至少有2人过关的概率P1;
(2)至多有3人过关的概率P2.
分析 "至少有2人过关"即事件B∪C∪D."至多有3人过关"即事件A,B,C与事件"4人均未过关"的并事件,其对立事件为D.(注意"4人均未过关"这种可能情况)
解 由条件知,事件A,B,C,D彼此互斥.
(1)P1=P(B∪C∪D)=P(B)+P(C)+P(D)=0.766.
(2)P2=P()=1-P(D)=1-0.084=0.916.
点评 处理"至多""至少"型问题,既可以分情况讨论,也可以从反面考虑,即借助对立事件的概率间接求解.当事件包含的情况较多时,常利用P(A)=1-P()求P(A).
三、列方程求解概率问题
例3 某班级同学的血型分别为A型、B型、AB型、O型,从中任取一名同学,其血型为AB型的概率为0.09,为A型或O型的概率为0.61,为B型或O型的概率为0.6,试求任取一人,血型为A型、B型、O型的概率各是多少?
分析 设出所求事件的概率,将题中涉及到的事件用所求事件表示出来,借助这些事件的概率及公式,列方程求解即可.
解 记"任取一人,血型为A型","任取一人,血型为B型","任取一人,血型为AB型","任取一人,血型为O型"分别为事件E,F,G,H,显然事件E,F,G,H两两互斥.