解 因为 = =
=-.所以这条曲线在点处的切线斜率为-,由直线的点斜式方程可得切线方程为y-=-(x-2),即x+4y-4=0.
要点二 求过曲线外一点的切线方程
例2 已知曲线y=2x2-7,求:
(1)曲线上哪一点的切线平行于直线4x-y-2=0?
(2)曲线过点P(3,9)的切线方程.
解 y′= = = (4x+2Δx)=4x.
(1)设切点为(x0,y0),则4x0=4,x0=1,y0=-5,
∴切点坐标为(1,-5).
(2)由于点P(3,9)不在曲线上.
设所求切线的切点为A(x0,y0),则切线的斜率k=4x0,
故所求的切线方程为y-y0=4x0(x-x0).
将P(3,9)及y0=2x-7代入上式,
得9-(2x-7)=4x0(3-x0).
解得x0=2或x0=4,所以切点为(2,1)或(4,25).
从而所求切线方程为8x-y-15=0或16x-y-39=0.
规律方法 若题中所给点(x0,y0)不在曲线上,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.
跟踪演练2 求过点A(2,0)且与曲线y=相切的直线方程.
解 易知点(2,0)不在曲线上,故设切点为P(x0,y0),由
y′|x=x0= =-,
得所求直线方程为y-y0=-(x-x0).
由点(2,0)在直线上,得xy0=2-x0,再由P(x0,y0)在曲线上,得x0y0=1,联