第四课时 微积分基本定理
一、教学目标:了解牛顿-莱布尼兹公式
二、教学重难点:牛顿-莱布尼兹公式
三、教学方法:探析归纳,讲练结合
四、教学过程
(一)、复习:定积分的概念及计算
(二)、探究新课
我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。
变速直线运动中位置函数与速度函数之间的联系
设一物体沿直线作变速运动,在时刻t时物体所在位置为S(t),速度为v(t)(),
则物体在时间间隔内经过的路程可用速度函数表示为。
另一方面,这段路程还可以通过位置函数S(t)在上的增量来表达,即
= 且。
对于一般函数,设,是否也有
若上式成立,我们就找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。
定理 如果函数是上的连续函数的任意一个原函数,则
证明:因为=与都是的原函数,故-=C()
其中C为某一常数。令得-=C,且==0
即有C=,故=+ =-=
令,有
为了方便起见,还常用表示,即