教学目标:
1、 使学生通过实际操作和讨论分析,探索并掌握平行四边形的面积公式,能应用公式正确计算平行四边形的面积,解决一些简单的实际问题。
2、 使学生经历观察、操作、测量、填表、讨论、推理等数学活动过程,初步体会图形转化的意义和价值,培养空间观念,发展初步的逻辑思维。
3、 使学生在探索平行四边形面积公式的活动中,进一步增强与同伴合作交流的意识,初步感受"变"与"不变"的辩证思想。
教学重点:理解并掌握平行四边形的面积公式。
教学难点:理解平行四边形的推导过程。
教学过程:
一、回顾导入:
提问:我们学习过哪些平面图形?你已经会求哪些平面图形的面积?
小结:通过前面的学习,我们已经掌握了正方形、长方形面积的计算方法,今天我们就运用一些学过的知识来研究平行四边形面积的计算方法。(板书课题)
(设计意图:激起学生回忆,帮助学生打开原有知识结构,为新知的有效建构作铺垫的重要环节。)
二、 探究新知:
1、教学例1。
出示例1图,提问:下面每组的两个图形面积相等吗?说说你是怎么比较的?
交流后指出:可以数格子,可以移一移,转化成右边的图形再比较。
演示移一移的过程,并说明:把①号图形中小长方形剪开、平移、拼合,和②号图形面积相等;把③号图形中小长方形剪开、平移、拼合,和④号图形面积相等。
讨论:数格子和移一移的方法,哪个更方便?
提问:通过刚才的操作,你能说说我们是怎样比较的?
指出:我们把每组里左边的不规则图形,经过剪、移、拼,变成了和右边完全一样的长方形或正方形,比较出每组两个图形面积相等,这个过程叫作转化,是