公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A、B、C三点不共线 => 有且只有一个平面α,
使A∈α、B∈α、C∈α。
公理2作用:确定一个平面的依据。
教师用正(长)方形模型,让学生理解两个平面的交线的含义。
引导学生阅读P42的思考题,从而归纳出公理3
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P∈α∩β =>α∩β=L,且P∈L
公理3作用:判定两个平面是否相交的依据
(三)、例题探析:教材P43 例1
通过例子,让学生掌握图形中点、线、面的位置关系及符号的正确使用。
(四)、课堂练习:课本P44 练习1、2、3、4
(五)、课时小结:(师生互动,共同归纳)
(1)本节课我们学习了哪些知识内容?(2)三个公理的内容及作用是什么?
(六)、作业布置:(1)复习本节课内容;(2)预习:同一平面内的两条直线有几种位置关系?
五、教后反思: