习题2-4A
1.2∶3.(提示:结合图形易得)
2.a=(-4,3)与l1平行,b=(1,5)与l2平行,cos〈a,b〉=.
3.因为\s\up6(→(→)=(2,1),所以\s\up6(→(→)=(1,-2)或(-1,2).当\s\up6(→(→)=(1,-2)时,\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)=(1,0),\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)=(-1,-1).当\s\up6(→(→)=(-1,2)时,同理可得\s\up6(→(→)=(-1,4),\s\up6(→(→)=(-3,3).所以,C,D的坐标为C(1,0),D(-1,-1)或C(-1,4),D(-3,3).
4.略
习题2-4B
1.\s\up6(→(→)=\s\up6(→(→)-\s\up6(→(→)=\s\up6(→(→)-\s\up6(→(→)=(\s\up6(→(→)-3\s\up6(→(→)),\s\up6(→(→)=\s\up6(→(→)-\s\up6(→(→)=(\s\up6(→(→)+3\s\up6(→(→)).在正方形ABCD中,AB⊥AD,AB=AD,所以\s\up6(→(→)·\s\up6(→(→)=0,所以LD⊥ML,∠MLD为直角.
2.设D点的坐标为(x,y),\s\up6(→(→)=(4,3),\s\up6(→(→)=(x-5,y),因为\s\up6(→(→)=λ\s\up6(→(→),所以因为\s\up6(→(→)⊥\s\up6(→(→),所以4x+3y-20=0.所以点D的坐标为.
3.设点D的坐标为(x,y),则\s\up6(→(→)=(10,5),\s\up6(→(→)=(x+2,y-11).
因为\s\up6(→(→)=λ\s\up6(→(→),所以
因为\s\up6(→(→)⊥\s\up6(→(→),所以2x+y=7.
所以x=4,y=-1.
所以点D的坐标为(4,-1),高为6.
4.因为M是BC的中点,则\s\up6(→(→)=(\s\up6(→(→)+\s\up6(→(→)),\s\up6(→(→)=(\s\up6(→(→)-\s\up6(→(→)),则4|\s\up6(→(→)|2=|\s\up6(→(→)|2+2\s\up6(→(→)·\s\up6(→(→)+|\s\up6(→(→)|2,4|\s\up6(→(→)|2=|\s\up6(→(→)|2-2\s\up6(→(→)·\s\up6(→(→)+|\s\up6(→(→)|2,所以|\s\up6(→(→)|2+|\s\up6(→(→)|2=2(|\s\up6(→(→)|2+|\s\up6(→(→)|2),即|AB|2+|AC|2=2|AM|2+2|BM|2.