如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片)
课本P41 图 2.1-4 说明
平面内有无数个点,平面可以看成点的集合。
点A在平面α内,记作:A∈α
点B在平面α外,记作:B α
2.1-4
3、平面的基本性质
教师引导学生思考教材P41的思考题,让学生充分发表自己的见解。
师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出以下公理
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
(教师引导学生阅读教材P42前几行相关内容,并加以解析)
符号表示为
A∈L
B∈L => L α
A∈α
B∈α
公理1作用:判断直线是否在平面内
师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等......
引导学生归纳出公理2
公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A、B、C三点不共线 => 有且只有一个平面α,
使A∈α、B∈α、C∈α。
公理2作用:确定一个平面的依据。
教师用正(长)方形模型,让学生理解两个平面的交线的含义。
引导学生阅读P42的思考题,从而归纳出公理3
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P∈α∩β =>α∩β=L,且P∈L
公理3作用:判定两个平面是否相交的依据
4、教材P43 例1 用符号表示下列图形中点、线、面之间的位置关系