探究点一 利用导数解决函数的极值问题
微点1 由图像判断函数极值
例1 [2018·杭州二中模拟] 如图2-15-1所示,可导函数y=f(x)在点P(x0,f(x0))处的切线为l:y=g(x).设h(x)=f(x)-g(x),则下列说法正确的是 ( )
图2-15-1
A.h'(x0)=0,x=x0是h(x)的极大值点
B.h'(x0)=0,x=x0是h(x)的极小值点
C.h'(x0)=0,x=x0不是h(x)的极值点
D.h'(x0)≠0,x=x0不是h(x)的极值点
[总结反思] 可导函数在极值点处的导数一定为零,是否为极值点以及是极大值点还是极小值点要看在极值点左、右两侧导数的符号.
微点2 已知函数求极值
例2 若x=1是函数f(x)=ax+ln x的极值点,则( )
A.f(x)有极大值-1
B.f(x)有极小值-1
C.f(x)有极大值0
D.f(x)有极小值0