图1
(1)由此我们猜测,弹簧的弹性势能可能与哪些因素有关?
(2)我们在研究重力势能的时候,是从分析重力做功入手的,由此你得到什么启发?
答案 (1)与劲度系数和形变量有关
(2)可以通过探究弹力做功来研究弹性势能.
2.如图2所示,弹簧处于原长时,其右端位于A点.现将弹簧由A点缓慢拉到B点,使其伸长Δl(仍处于弹性限度内):
图2
(1)在从A拉到B的过程中弹簧的弹性势能如何变化?弹性势能与拉力做的功有什么关系?
(2)拉力F是恒力吗?怎样计算拉力的功?
(3)作出F-Δl图象并类比v-t图象中面积的含义,思考F-Δl图象中"面积"有何物理意义?当Δl=x时,其表达式是怎样的?
答案 (1)弹簧的弹性势能变大.拉力做的功越多,弹簧储存的弹性势能越大且拉力做的功等于弹簧的弹性势能.
(2)拉力F不是恒力,故不能用W=FΔl计算拉力的功.若将从A到B的过程分成很多小段Δl1、Δl2、Δl3...,在各个小段上拉力可近似认为是不变的.各小段上拉力做的功分别是F1Δl1、F2Δl2、F3Δl3...,拉力在整个过程中做的功W=F1Δl1+F2Δl2+F3Δl3+....
(3)根据胡克定律,F-Δl图象是一条过原点的倾斜直线,如图.阴影部分面积代表拉力做的功即弹性势能,当Δl=x时,Ep=kx2,k为弹簧的劲度系数,x为弹簧的伸长量.
[知识深化]
1.探究思路及方法
(1)猜想:弹性势能与弹簧的劲度系数和形变量有关.
(2)探究思路:弹性势能的变化量与弹力做功相等.
2.弹性势能的推导
根据胡克定律F=kx,作出弹力F与弹簧伸长量x关系的F-x图线,根据W=Fx知,图线与横轴所围的面积应等于F所做的功,即W==kx2,所以Ep=kx2.