四、变式训练,深化提高
等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列.
(1)求{an}的公比q;
(2)若a1-a3=3,求Sn.
五、反思小结,观点提炼
参考答案
一、设计问题,创设情境
1.an=a1qn-1
2.Sn={■(na_1 "(" q=1")," @(a_1 "(" 1"-" q^n ")" )/(1"-" q) "(" q≠1")" )┤
3.S3k-S2k
二、信息交流,揭示规律
2.qk
三、运用规律,解决问题
【例1】解:因为S3=26,a1+a2+a3=26,
所以a1(1+q+q2)=26,即2(1+q+q2)=26,
于是得q2+q-12=0,解得q=-4,或q=3,
当q=-4时,Sn=(2"[" 1"-(-" 4")" ^n "]" )/(1"-(-" 4")" )=2/5-2/5×(-4)n,
当q=3时,Sn=(2"(" 1"-" 3^n ")" )/(1"-" 3)=3n-1.
【例2】解:由性质知:Sn,S2n-Sn,S3n-S2n成等比数列.
所以122=48×(S3n-60),解得S3n=63.
【例3】解:由Sn=pn(n∈N*),有a1=S1=p.
当n≥2时,an=Sn-Sn-1=pn-pn-1=(p-1)pn-1,
故a2=(p-1)p,因此数列{an}成等比数列⇔{■(p≠0"," @p"-" 1≠0"," @("(" p"-" 1")" p^(n"-" 1))/("(" p"-" 2")" p^(n"-" 2) )=(p"(" p"-" 1")" )/p "." )┤
但满足此条件的实数p是不存在的,所以数列{an}不是等比数列.
四、变式训练,深化提高
解:(1)由题意,有S1+S2=2S3,即a1+(a1+a1q)=2(a1+a1q+a1q2).
又已知a1≠0,q≠0,解得q=-1/2.
(2)由已知得a1-a1("-" 1/2)^2=3,解得a1=4.从而Sn=4[1"-" ("-" 1/2)^n ]/1"-" ("-" 1/2) =8/3 [1"-" ("-" 1/2)^n ].