率
2.若设, (这里看作是对于x1的一个"增量"可用x1+代替x2,同样)
3. 则平均变化率为___________.
思考:观察函数f(x)的图象
平均变化率表示什么?
(1) 一起讨论、分析,得出结果;
(2) 计算平均变化率的步骤:①求自变量的增量Δx=x2-x1;②求函数的增量Δf=f(x2)-f(x1);③求平均变化率.
注意:①Δx是一个整体符号,而不是Δ与x相乘;
②x2= x1+Δx;
③Δf=Δy=y2-y1;
三.典例分析
例1.已知函数f(x)=的图象上的一点及临近一点,则 .
解:
例2.求在附近的平均变化率。
解:
四.有效训练
1.质点运动规律为,则在时间中相应的平均速度为 .
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s附近的平均变化率.
3.过曲线y=f(x)=x3上两点P(1,1)和Q (1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.
反思总结:1、平均变化率的概念
2、如何求函数在某点附近的平均变化率
当堂检测
1、函数在区间上的平均变化率是( )
A、4 B、2 C、 D、
2、经过函数图象上两点A、B的直线的斜率()为_______;函