2019-2020学年人教A版选修2-2 第三章 第一节 3.2.2复数代数形式的乘除运算 教案
2019-2020学年人教A版选修2-2   第三章 第一节 3.2.2复数代数形式的乘除运算  教案第2页

  证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R).

   ∵(z1z2)z3=[(a1+b1i)(a2+b2i)](a3+b3i)=[(a1a2-b1b2)+(b1b2+a1b2)i](a3+b3i)

     =[(a1a2-b1b2)a3-(b1a2+a1b2)b3]+[(b1a2+a1b2)a3+(a1a2-b1b2)b3]i

=(a1a2a3-b1b2a3-b1a2b3-a1b2b3)+(b1a2a3+a1b2b3+a1a2b3-b1b2b3)i,

  同理可证:

  z1(z2z3)=(a1a2a3-b1b2a3-b1a2b3-a1b2b3)+(b1a2a3+a1b2a3+a1a2b3-b1b2b3)i,

  ∴(z1z2)z3=z1(z2z3).

  (3)z1(z2+z3)=z1z2+z1z3.

  证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R).

   ∵z1(z2+z3)=(a1+b1i)[(a2+b2i)+(a3+b3i)]=(a1+b1i)[(a2+a3)+(b2+b3)i]

=[a1(a2+a3)-b1(b2+b3)]+[b1(a2+a3)+a1(b2+b3)]i

=(a1a2+a1a3-b1b2-b1b3)+(b1a2+b1a3+a1b2+a1b3)i.

  z1z2+z1z3=(a1+b1i)(a2+b2i)+(a1+b1i)(a3+b3i)

=(a1a2-b1b2)+(b1a2+a1b2)i+(a1a3-b1b3)+(b1a3+a1b3)i

=(a1a2-b1b2+a1a3-b1b3)+(b1a2+a1b2+b1a3+a1b3)i

=(a1a2+a1a3-b1b2-b1b3)+(b1a2+b1a3+a1b2+a1b3)i

∴z1(z2+z3)=z1z2+z1z3.

3.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数

  通常记复数的共轭复数为。

(三)、分析归纳,抽象概括

4. 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商,记为:(a+bi)(c+di)或者

  5.除法运算规则:

  ①设复数a+bi(a,b∈R),除以c+di(c,d∈R),其商为x+yi(x,y∈R),

  即(a+bi)÷(c+di)=x+yi

  ∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i.

∴(cx-dy)+(dx+cy)i=a+bi.