2019-2020学年北师大版必修二 直线与圆圆与圆的位置关系 学案
2019-2020学年北师大版必修二            直线与圆圆与圆的位置关系    学案第3页

C.(-∞,-6) D.(-6,+∞)

答案 C

解析 ∵x2+y2-2x-2y+b=0表示圆,∴8-4b>0,即b<2.∵直线ax+y+a+1=0过定点(-1,-1),∴点(-1,-1)在圆x2+y2-2x-2y+b=0的内部.∴6+b<0,解得b<-6,∴b的取值范围是(-∞,-6).故选C.

6.(2018·全国卷Ⅰ)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________.

答案 2

解析 根据题意,圆的方程可化为x2+(y+1)2=4,所以圆的圆心为(0,-1),且半径是2,根据点到直线的距离公式可以求得圆心到直线的距离d==,所以|AB|=2=2.

核心考向突破

考向一 直线与圆的位置关系

例1 (1)(2019·安徽黄山模拟)若曲线x2+y2-6x=0(y>0)与直线y=k(x+2)有公共点,则k的取值范围是(  )

A. B.

C. D.

答案 C

解析 ∵x2+y2-6x=0(y>0)可化为(x-3)2+y2=9(y>0),∴曲线表示圆心为(3,0),半径为3的上半圆(不包括圆与x轴的交点),它与直线y=k(x+2)有公共点的充要条件是圆心(3,0)到直线y=k(x+2)的距离d≤3,且k>0,∴≤3,且k>0,解得0

(2)(2018·深圳模拟)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是(  )

A.相切 B.相交

C.相离 D.不确定

答案 B

解析 因为M(a,b)在圆O:x2+y2=1外,所以a2+b2>1,而圆心O到直线ax+by=1的距离d==<1.故选B.

触类旁通

判断直线与圆的位置关系常见的两种方法

(1)代数法:判别式Δ=b2-4ac

2几何法:利用圆心到直线的距离d和圆半径r的大小关系:dr⇔相离.

即时训练 1.(2019·福建漳州八校联考)已知点P(a,b)(ab≠0)是圆x2+y2=r2内的一点,直线m是以P为中点的弦所在的直线,直线l的方程为ax+by=r2,那么(  )

A.m∥l,且l与圆相交 B.m⊥l,且l与圆相切

C.m∥l,且l与圆相离 D.m⊥l,且l与圆相离

答案 C

解析 ∵点P(a,b)(ab≠0)在圆内,∴a2+b2=r,∴