(1)一列火车从北京过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米。北京到济南的铁路场多少千米? (2)玉门县要修一条公路,已经修了400千米,还有260千米没有修,这条公路有多少千米? 求: (1)画出线段图。 (2)列式计算。 比较两题在应用运算定律方面有什么不同。 在比较重视学生明确,第1题只应用了加法结合律,而第2题先用加法交换律把75和480交换位置,再应用加法结合律把325和75相加才能使计算简便。 师生共同订正。(简单说明线段图应该怎样画,做简要规范。) (3)根据运算定律在下面的□里填上适当的数。 369+258+147=369+(□+147) (23+47)+56=23+(□+□) 654+(97+a)=(654+□)+□ (4)下面哪些等式符合加法结合律? a+(20+9)=(a+20)+9 15+(7+b)=(20+2)+b (10+20)+30+40=10+(20+30)+40 (5)用简便方法计算: 91+89+11 78+46+154 168+250+32 85+41+15+59 计算:480+325+75 325+480+75 二、小结 学生谈收获。 第四课时: 教学内容: P34/例1(乘法交换律) 例2(乘法结合律) 教学目标: 1.引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。 2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。 3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。 教学过程: 一、主题图引入 观察主题图,根据条件提出问题。 (1)负责挖坑、种树的一共有多少人? (2)一共要浇多少桶水? 学生在练习本上独立解决问题。引导学生观察主题图。根据学生提出的问题,适当板书。 二、新授 引导学生对解决的问题进行汇报。(1)4×25=100(人) 25×4=100(人) 两个算式有什么特点? 4 你还能举出其他这样的例子吗? 教师根据学生的举例进行板书。 你们能给乘法的这种规律起个名字吗? 板书:交换两个因数的位置,积不变。这叫做乘法交换律。 能试着用字母表示吗? 学生汇报字母表示:a×b=b×a 我们在原来的学习中用过乘法交换律吗?在验算乘法时,可以用交换因数的位置,再算一遍的方法进行验算,就是用了乘法交换律。 根据前面的加法结合律的方法,你们能试着自己学习乘法中的另一个规律吗?教师巡视,适时指导。 (2)(25×5)×2 25×(5×2) =125×2 =10×25 =250(桶) =250(桶) 小组合作学习。 ①这组算式发现了什么?②举出几个这样的例子。③用语言表述规律,并起名字。④字母表示。小组汇报。 教师根据学生的汇报,进行板书整理。 三、巩固练习P35/做一做1、2 四、小结 学生小结本节课的学习内容。 教师引导学生回忆整节课的学习要点。 五、作业:P37/2-4 第五课时: 教学内容: 乘法交换律和乘法结合律练习课 教学目标: 1.能运用运算定律进行一些简便运算。 2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。 3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。 教学过程: 一、基本练习 (1)口算:50×2=100 50×20=1000 25×4=100 25×8=200 25×12=300 25×40=1000 125×8=1000 125×16=200 125×24=3000 125×80=10000 通过刚才的口算,你们很快就算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁? 板书:5×2 25×4 125×8 (2)在□里填上合适的数。30×6×7=30×(□×□) 125×8×40=(□×□)×□ (3)计算: 43×25×4 25×43×4 比较两道题,在运用乘法运算定律时有什么不同? 在讨论的基础上,启发学生总结出:第1题只应用乘法结合律把后两个数相乘,就可以使计算简便;第2题要先用乘法交换律把4放在前面,使25与4相乘,或把25放在43的后面,使25与4相乘,然后再用乘法结合律,使计算简便。 小结:用乘法结合律进行简便计算有两种情况:一种是单独运用乘法结合律使计算简便,一种是两个运算定律结合使用,使计算简便。关键要掌握运算定律的内容,根据题目的特点,灵活运用运算定律。 引导学生在对比中加以区分。 (4)师生比赛,看谁直接说出结果速度快。25×42×4 68×125×8 4×39×25 (5)对比练习:4×25+16×25 4×25×16×25 5 (25+15) ×4 (25×15)×4 4