(2)负相关:如果两个变量中,一个变量的值由小到大变化时,另一个变量的值由大到小变化,那么这种相关称为负相关。在散点图中,对应数据的位置为从左上角到右下角的区域。按表中所列数据制作的散点图如图。
C 5 8 16 18 28 30 35 D 64 56 50 42 37 32 21
(3)无相关关系:如果关于两个变量统计数据的散点图如下图所示,那么这两个变量之间不具有相关关系。例如,生的身高与生的习成绩没有相关关系。
要点诠释:
利用散点图可以大致判断两个变量之间有无相关关系。
要点三、线性回归方程
1.回归直线方程
(1)回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近。如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。求出的回归直线方程简称回归方程。
2.回归直线方程的求法
设与个观测点()最接近的直线方程为,其中a、b是待定系数.
则 .于是得到各个偏差
.
显见,偏差的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n个偏差的平方和.
表示n个点与相应直线在整体上的接近程度.