解 (1)∵f(x)是奇函数,∴f(-x)=-f(x),
∴=-=.
比较得n=-n,n=0.
又f(2)=,∴=,解得m=2.
即实数m和n的值分别是2和0.
(2)函数f(x)在(-∞,-1]上为增函数,在(-1,0)上为减函数.
证明如下:由(1)可知f(x)==+.
设x1 则f(x1)-f(x2)=(x1-x2) =(x1-x2)·. 当x1 ∴f(x1)-f(x2)<0,即f(x1) ∴函数f(x)在(-∞,-1]上为增函数; 当-1 x1-x2<0,x1x2>0,x1x2-1<0, ∴f(x1)-f(x2)>0,即f(x1)>f(x2), ∴函数f(x)在(-1,0)上为减函数. 四、函数图象及应用 函数的图象是函数的重要表示方法,它具有明显的直观性,通过函数的图象能够掌握函数重要的性质,如单调性、奇偶性等.反之,掌握好函数的性质,有助于图象正确的画出. 函数图象广泛应用于解题过程中,利用数形结合解题具有直观、明了、易懂的优点,在历届高考试题中,常出现有关函数图象和利用图象解题的试题. 例4 设函数f(x)=x2-2|x|-1 (-3≤x≤3), (1)证明f(x)是偶函数; (2)画出这个函数的图象; (3)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数; (4)求函数的值域. (1)证明 f(-x)=(-x)2-2|-x|-1 =x2-2|x|-1=f(x), 即f(-x)=f(x),∴f(x)是偶函数. (2)解 当x≥0时,f(x)=x2-2x-1=(x-1)2-2,