药.
例2 (1)已知命题p:"任意x∈[1,2],x2-a≥0",与命题q:"存在x∈R,x2+2ax+2+a=0"都是真命题,则实数a的取值范围为______________.
(2)已知命题p:"存在x∈[1,2],x2-a≥0"与命题q:"存在x∈R,x2+2ax+2+a=0"都是真命题,则实数a的取值范围为____________.
解析 (1)将命题p转化为"当x∈[1,2]时,
(x2-a)min≥0",即1-a≥0,即a≤1.
命题q:即方程有解,Δ=(2a)2-4×(2+a)≥0,
解得a≤-1或a≥2.综上所述:a≤-1.
(2)命题p转化为当x∈[1,2]时,(x2-a)max≥0,即4-a≥0,即a≤4.命题q同(1).综上所述:a≤-1或2≤a≤4.
答案 (1)a≤-1 (2)a≤-1或2≤a≤4
点评 认真比较两题就会发现,两题形似而神异,所谓失之毫厘,谬之千里,需要我们抓住这类问题的本质--量词,有的放矢.
3.挖掘等价转化思想,提高解题速度
在四种命题的关系、充要条件、简单的逻辑联结词、全称量词与存在量词中,时时刻刻渗透着等价转化思想,例如互为逆否命题的两个命题(原命题与逆否命题或逆命题与否命题)一定同真或同假,它们就是等价的;但原命题与逆命题不等价,即原命题为真,其逆命题不一定为真.
例3 设p:q:x2+y2≤r2 (r>0),若q是綈p的充分不必要条件,求r的取值范围.
分析 "q是綈p的充分不必要条件"等价于"p是綈q的充分不必要条件".设p、q对应的集合分别为A、B,则可由A⊆∁RB出发解题.
解 设p、q对应的集合分别为A、B,将本题背景放到直角坐标系中,则点集A表示平面区域,点集∁RB表示到原点距离大于r的点的集合,也即是圆x2+y2=r2外的点的集合.
∵A⊆∁RB表示区域A内的点到原点的最近距离大于r,
∴直线3x+4y-12=0上的点到原点的最近距离大于等于r,∵原点O到直线3x+4y-12=0的距离
d==,∴r的取值范围为0 点评 若直接解的话,q是¬ p的充分不必要条件即为x2+y2≤r2 (r>0)在p