答:汽车在这 1 min 行驶的路程是 1350m .
例2.如图1·7一4 ,在弹性限度内,将一弹簧从平衡位置拉到离平衡位置lm 处,求克服弹力所作的功.
解:在弹性限度内,拉伸(或压缩)弹簧所需的力 F ( x )与弹簧拉伸(或压缩)的长度 x 成正比,即 F ( x )= kx ,
其中常数 k 是比例系数.
由变力作功公式,得到
答:克服弹力所作的功为.
课堂练习
如果1N能拉长弹簧1cm,为了将弹簧拉长6cm,需做功( A )
A 0.18J B 0.26J C 0.12J D 0.28J
略解:设,则由题可得,所以做功就是求定积分
(五)、归纳小结、布置作业
本节课主要学习了定积分在物理学中的应用,要掌握几种常见图形面积的求法,并且要注意定积分的几何意义,不能等同于图形的面积,要注意微积分的基本思想的应用与理解。
布置作业: