2019-2020学年人教A版选修2-1 椭圆及其标准方程 教案
2019-2020学年人教A版选修2-1      椭圆及其标准方程  教案第2页

(2)新课讲授过程

(i)由上述探究过程容易得到椭圆的定义.

   把平面内与两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆(ellipse).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为时,椭圆即为点集.

(ii)椭圆标准方程的推导过程

  提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.

无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理.

设参量的意义:第一、便于写出椭圆的标准方程;第二、的关系有明显的几何意义.

类比:写出焦点在轴上,中心在原点的椭圆的标准方程.

 (iii)例题讲解与引申

  例1 :

  已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程.

分析:由椭圆的标准方程的定义及给出的条件,容易求出.引导学生用其他方法来解.

另解:设椭圆的标准方程为,因点在椭圆上,

则.

例2:如图,在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹是什么?