五年级上册数学公开课《2.1平行四边形的面积》教学设计教案
五年级上册数学公开课《2.1平行四边形的面积》教学设计教案第3页

算图形面积的一直常用方法。今天我们就运用这种转化的的思想来研究平行四边形面积的计算。(板书:转化)

(设计意图:引导他们初步体会:复杂图形可以转化成简单的图形,割补,平移是实现转化的基本方法,转化前后的图形形状变了但面积不变。从而为接下来的探索活动提供了基本思路。也向学生明确遇到复杂不规则图形时,数格子不一定简便,为将来要学习的不规则图形面积计算做预热。)

2、教学例2。

出示题目,提问:你能把这个平行四边形转化成长方形吗?拿出准备好的平行四边形,想一想你打算怎么剪,先画一画,然后再剪一剪。

学生操作后,交流:谁愿意把自己的操作过程说给同学听听?

预设1:从平行四边形的一个顶点出发,沿着一条高剪成一个三角形和一个梯形,将三角形向右平移或将梯形向左平移,转化成长方形。

预设2:沿平行四边形一条高,剪成两个梯形,将其中一个梯形向左或向右平移,转化成长方形。

投影演示后,追问:还有不同的剪法吗?

比较:大家的剪、拼方法不完全相同,这些方法之间有什么相同的地方吗?(都是沿着平行四边形的一条高剪开的)

追问:为什么都要沿着平行四边形的高剪开?

指出:沿着高剪开,能使转化后的图形中出现直角,从而也就能使平行四边形转化为长方形。

(设计意图:帮助学生进一步体会转化的意义,积累图形转化的具体经验和方法,为推导平行四边形的面积公式做准备。沿着平行四边形的一条高把它剪成两部分,是实现上述转化的关键。将平行四边形放置于方格纸上,以诱发学生的转化思路;再者通过引导学生交流各自的剪法,在比较中体会沿着高剪的必要性和合理性。)

3、教学例3。

(1)设疑:任意一个平行四边形沿着高剪都能转化成长方形吗?平行四边形转化成长方形后,它的面积大小变化了吗?与原来的平行四边形之间有什么联系?

(2)出示例3:请大家从教科书第115页上选一个平行四边形剪下来,先把