c注意单位,打点计时器打的点和人为选取的计数点的区别
竖直上抛运动:(速度和时间的对称)
上升过程匀减速直线运动,下落过程匀加速直线运动.全过程是初速度为V0加速度为g的匀减速直线运动。
(1)上升最大高度:H = (2)上升的时间:t= (3)从抛出到落回原位置的时间:t =
(4)上升、下落经过同一位置时的加速度相同,而速度等值反向
(5)上升、下落经过同一段位移的时间相等。
(6) 适用全过程S = Vo t -g t2 ; Vt = Vo-g t ; Vt2-Vo2 = -2gS (S、Vt的正、负号的理解)
几个典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动
牛二:F合 = m a 理解:(1)矢量性 (2)瞬时性 (3)独立性 (4)同体性 (5)同系性 (6)同单位制
万有引力及应用:与牛二及运动学公式
1思路:卫星或天体的运动看成匀速圆周运动, F心=F万 (类似原子模型)
2方法:F引=G= F心= ma心= m2 R= mm4n2 R
地面附近:G= mg GM=gR2 (黄金代换式)
轨道上正常转:G= m 【讨论(v或EK)与r关系,r最小时为地球半径,
v第一宇宙=7.9km/s (最大的运行速度、最小的发射速度);T最小=84.8min=1.4h】
G=mr = m M= T2=
(M=V球=r3) s球面=4r2 s=r2 (光的垂直有效面接收,球体推进辐射) s球冠=2Rh
3理解近地卫星:来历、意义 万有引力≈重力=向心力、 r最小时为地球半径、
最大的运行速度=v第一宇宙=7.9km/s (最小的发射速度);T最小=84.8min=1.4h
4同步卫星几个一定:三颗可实现全球通讯(南北极有盲区)
轨道为赤道平面 T=24h=86400s 离地高h=3.56x104km(为地球半径的5.6倍)
V=3.08km/s﹤V第一宇宙=7.9km/s =15o/h(地理上时区) a=0.23m/s2
5运行速度与发射速度的区别
6卫星的能量:
r增v减小(EK减小