(2)三角形任两边之和大于第三边.
解 设△ABC三边分别为a,b,c,则
类型二 作差法比较大小
例3 已知a,b均为正实数.试利用作差法比较a3+b3与a2b+ab2的大小.
考点 实数大小的比较
题点 作差法比较大小
解 ∵a3+b3-(a2b+ab2)=(a3-a2b)+(b3-ab2)
=a2(a-b)+b2(b-a)
=(a-b)(a2-b2)=(a-b)2(a+b).
当a=b时,a-b=0,a3+b3=a2b+ab2;
当a≠b时,(a-b)2>0,a+b>0,a3+b3>a2b+ab2.
综上所述,a3+b3≥a2b+ab2.
反思与感悟 比较两个实数的大小,可以求出它们的差的符号.作差法比较实数大小的一般步骤是作差→恒等变形→判断差的符号→下结论.作差后变形是比较大小的关键一步,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式.
跟踪训练3 已知x<1,试比较x3-1与2x2-2x的大小.
考点 实数大小的比较
题点 作差法比较大小
解 ∵(x3-1)-(2x2-2x)=x3-2x2+2x-1
=(x3-x2)-(x2-2x+1)=x2(x-1)-(x-1)2
=(x-1)(x2-x+1)=(x-1),
∵2+>0,x-1<0,
∴(x-1)<0,
∴x3-1<2x2-2x.
1.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,则用不等式表示上述关系为________.