图2
活动:回顾简单几何体的结构特征,再将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.
解:图2(1)是由一个圆锥和一个圆台拼接而成的组合体;
图2(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;
图2(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.
点评:本题主要考查简单组合体的结构特征和空间想象能力.
变式训练
如图3所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.
图3
答案:一个大球内部挖去一个同球心且半径较小的球.
例2 连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.
活动:先画出正方体,然后取各个面的中心,并依次连成线观察即可.连接相应点后,得出图形如图4(1),再作出判断.
(1) (2)
图4
解:如图4(1),正方体ABCD-A1B1C1D1,O1、O2、O3、O4、O5、O6分别是各表面的中心.由点O1