知识要点:
1.直线与圆锥曲线的公共点的情况
(1)没有公共点 方程组无解
(2)一个公共点
(3)两个公共点
2.连结圆锥曲线上两个点的线段称为圆锥曲线的弦,要能熟练地利用方程的根与系数关系来计算弦长,常用的弦长公式:
3.以平面向量作为工具,综合处理有关长度、角度、共线、平行、垂直、射影等问题
主要题型:
1.三点共线问题;
2.公共点个数问题;
3.弦长问题;
4.中点问题;
5.定比分点问题;
6.对称问题;
7.平行与垂直问题;
8.角的问题。
近几年平面向量与解析几何交汇试题考查方向为
(1)考查学生对平面向量知识的简单运用,如向量共线、垂直、定比分点。
(2)考查学生把向量作为工具的运用能力,如求轨迹方程,圆锥曲线的定义,标准方程和几何性质,直线与圆锥曲线的位置关系。
特别提醒:法和韦达定理是解决直线和圆锥曲线位置关系的重要工具。
★★★突破重难点
【例1】在平面直角坐标系O中,直线与抛物线y2=2x相交于A、B两点.
(1)求证:"如果直线l过点T(3,0),那么=3"是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
[解](1)设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x2,y2).
当直线l的钭率不存在时,直线l的方程为x=3,此时,直线l与抛物线相交于
点A(3,)、B(3,-). ∴=3;
当直线l的钭率存在时,设直线l的方程为,其中,
由得
又 ∵ ,
∴,
综上所述,命题"如果直线过点T(3,0),那么=3"是真命题;
(2)逆命题是:设直线l交抛物线y2=2x于A、B两点,如果=3,那么该直线过点T(3,0).该命题是假命题.