2010届高考数学考前复习:函数模型及其应用
2010届高考数学考前复习:函数模型及其应用第2页

型函数表达的函数模型,其增长特点是随着自变量的增大,函数值增大的速度越来越快,常形象地称之为"指数爆炸"。(3)对数函数模型:能用对数函数表达式表达的函数模型,其增长特点是开始阶段增长得较快,但随着的逐渐增大,其函数值变化越来越慢,常称之为"蜗牛式增长"。(4)幂函数模型:能用幂函数表示表达的函数模型,其增长情况随中的取值变化而定,常见的有二次函数模型。(5)"对勾" 函数模型:形如的函数模型,在现实生活中有着广泛的应用,常利用"基本不等式"解决,有时通过利用导数研究其单调性来求最值。

2.构建函数模型的基本步骤:(1)审题:弄清题意,分析条件和结论,理顺数量关系,恰当选择数学模型;(2)建模:将文字语言、图形(或者数表)等转化为数学语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将利用数学知识和方法得出的结论,还原为实际问题的意义。

(三)、基础巩固训练

1.一批物资要用11辆汽车从甲地运到360千米外的乙地,若车速为v千米/时,则两车的距离不能小于千米.运完这批物资至少需要( )。

A.10小时; B.11小时; C.12小时; D.13小时

[解析] C;显然11辆汽车之间的距离之和为千米,所以若车速为v千米/时,11

辆汽车从甲地运到360千米外的乙地,需要时间为,而

,当且仅当,即时取"="

2.甲、乙两间工厂的月产值在08年元月份时相同,甲以后每个月比前一个月增加相同的产值.乙以后每个月比前一个月增加产值的百分比相同.到08年11月份发现两间工厂的月产值又相同.比较甲、乙两间工厂08年6月份的月产值大小,则有( )。

A. 甲的产值<乙的产值;B. 甲的产值=乙的产值;C. 甲的产值>乙的产值 D.不能确定

[解析] C;设两间工厂08年元月份的月产值为,甲厂每月增加的产值为,乙厂每个月

比前一个月增加产值的百分比为,则依题意得,故

从而甲、乙两间工厂在08年6月份的月产值的差为