典例分析 例3 如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A、B的任意一点,求证:平面PAC⊥平面PBC.
证明:设⊙O所在平面为,由已知条件,
PA⊥,BC在内,
所以PA⊥BC.
因为点C是圆周上不同于A、B的任意一点,AB是⊙O的直径,
所以,∠BCA是直角,即BC⊥AC.
又因为PA与AC是△PAC所在平面内的两条直线.
所以BC⊥平面PAC.
又因为BC在平面PBC内,
所以,平面PAC⊥平面PBC. 随堂练习 1.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体S - EFG中必有( A )
A.SG⊥EFG所在平面
B.SD⊥EFG所在平面
C.GF⊥SEF所在平面
D.GD⊥SEF所在平面
2.如图,已知AB⊥平面BCD,BC⊥CD,你能发现哪些平面互相垂直,为什么?
答:面ABC⊥面BCD
面ABD⊥面BCD
面ACD⊥面ABC.