确定边界点是问题的关键,但边界点是否取到不会影响事件A的概率.
练一练
1.(2016·全国乙卷)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )
A. B. C. D.
解析:选B 如图,
7:50至8:30之间的时间长度为40 分钟,而小明等车时间不超过10 分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20 分钟,由几何概型概率公式知所求概率为P==.故选B.
讲一讲
2.(2014·辽宁高考)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )
A. B. C. D.
[尝试解答] 由几何概型的概率公式可知,质点落在以AB为直径的半圆内的概率P===,故选B.
答案:B
解与面积相关的几何概型问题的三个关键点
(1)根据题意确认是否是与面积有关的几何概型问题;
(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积;
(3)套用公式,从而求得随机事件的概率.
练一练
2.如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号覆盖范