解 命题(1)完整的表述应为"所有梯形的对角线相等",很显然为全称命题.
命题(2)为特称命题.
命题(3)完整的表述为"所有的二次函数都存在零点",故为全称命题.
命题(4)是命题"过任意两条平行线有且只有一个平面"的简写,故为全称命题.
类型二 判断命题的真假
例2 判断下列命题的真假.
(1)任意x∈R,x2-x+1>;
(2)存在α,β,cos(α-β)=cosα-cosβ;
(3)存在一个函数既是偶函数又是奇函数;
(4)每一条线段的长度都能用正有理数表示;
(5)存在一个实数x,使等式x2+x+8=0成立.
考点 特称(全称)命题的真假性判断
题点 特称(全称)命题真假的判断
解 (1)真命题,∵x2-x+1-=x2-x+
=2+≥>0,
∴x2-x+1>恒成立.
(2)真命题,例如α=,β=,符合题意.
(3)真命题,函数f(x)=0既是偶函数又是奇函数.
(4)假命题,如:边长为1的正方形的对角线长为,它的长度就不是有理数.
(5)假命题,因为该方程的判别式Δ=-31<0,故无实数解.
反思与感悟 要判定全称命题是真命题,需要对集合M中每个元素x,证明p(x)都成立;如果在集合M中找到一个元素x,使得p(x)不成立,那么这个全称命题就是假命题.
要判定特称命题是真命题,只需在集合M中找到一个元素x,使p(x)成立即可;如果在集合M中,使p(x)成立的元素x不存在,那么这个特称命题就是假命题.
跟踪训练2 判断下列命题的真假.
(1)有一些奇函数的图像过原点;