2019-2020学年北师大版必修三 生活中的概率 教案
2019-2020学年北师大版必修三     生活中的概率  教案第3页

【变式训练3】袋内有35个球,每个球上都记有从1~35中的一个号码,设号码为n的球的重量为-5n+20克,这些球以等可能性从袋里取出(不受重量、号码的影响).

(1)如果取出1球,试求其重量比号码数大5的概率;

(2)如果任意取出2球,试求它们重量相等的概率.

【解析】(1)由不等式-5n+20>n+5,得n>15或n<3,

由题意知n=1,2或者n=16,17,...,35,于是所求概率为.

(2)设第n号和第m号的两个球的重量相等,

其中n<m,则有-5n+20=-5m+20,

所以(n-m)(n+m-15)=0.

所以(n,m)=(1,14),(2,13),...,(7,8).

故所求概率为.

总结提高

1.对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件.集合A的对立事件记作,从集合的角度来看,事件所含结果的集合正是全集U中由事件A所含结果组成集合的补集,即A∪=U,A∩=.对立事件一定是互斥事件,但互斥事件不一定是对立事件.

事件A、B的和记作A+B,表示事件A、B至少有一个发生.当A、B为互斥事件时,事件A+B是由"A发生而B不发生"以及"B发生而A不发生"构成的.

当计算事件A的概率P(A)比较困难时,有时计算它的对立事件的概率则要容易些,为此有P(A)=1-P().

2.若A与B互相独立,则与,A与,与B都是相互独立事件.判断A与B是否独立的方法是看P(AB)=P(A)·P(B)是否成立.