用平均不等式解应用题
[例3] 如图所示,在一张半径是2米的圆桌的正中央上空挂一盏电灯.大家知道,灯挂得太高了,桌子边缘处的亮度就小;挂得太低,桌子的边缘处仍然是不亮的.由物理学知道,桌子边缘一点处的照亮度E和电灯射到桌子边缘的光线与桌子的夹角θ的正弦成正比,而和这一点到光源的距离r的平方成反比,即E=k.
这里k是一个和灯光强度有关的常数,那么究竟应该怎样选择灯的高度h,才能使桌子边缘处最亮?
[思路点拨] →
→
→→
[解] ∵r=,
∴E=k·.
∴E2=·sin2θ·cos4θ=·(2sin2θ)·cos2θ·cos2θ≤·3=.
当且仅当2sin2θ=cos2θ时取等号,
即tan2θ=,tan θ=.
∴h=2tan θ=.即h=时,E最大.
本题获解的关键是在获得了E=k·后,对E的表达式进行变形求得E的最大值.解应用题时必须先读懂题意,建立适当的函数关系式,若把问题转化为求函数的最值问题,常配凑成可以用平均不等式的形式,若符合条件"一正、二定、三相等"即可求解.