(2)证明:直线平面;
(3)求异面直线所成角的正弦值.
解:(1)依题作点、在平面内的正投影、,则、分别为、的中点,连结、、、,则所求为四棱锥的体积,其底面面积为
,
又面,,∴.
(2)以为坐标原点,、、所在直线分别作轴,轴,轴,得、,又,,,则,,,
∴,,即,,
又,∴平面.
(3),,则,设异面直线所成角为,则.
例题2.已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点。
求:D1E与平面BC1D所成角的大小(用余弦值表示)
解析:建立坐标系如图,
则、,,
,,,,,
,,。