此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.
概括地说,如果p q,那么p 与 q互为充要条件.
3.例题分析
例1:下列各题中,哪些p是q的充要条件?
(1) p:b=0,q:函数f(x)=ax2+bx+c是偶函数;
(2) p:x > 0,y > 0,q: xy> 0;
(3) p: a > b ,q: a + c > b + c;
(4) p:x > 5, ,q: x > 10
(5) p: a > b ,q: a2 > b2
分析:要判断p是q的充要条件,就要看p能否推出q,并且看q能否推出p.
解:命题(1)和(3)中,p==>q ,且q==>p,即p q,故p 是q的充要条件;
命题(2)中,p==>q ,但q p,故p 不是q的充要条件;
命题(4)中,pq ,但q==>p,故p 不是q的充要条件;
命题(5)中,pq ,且qp,故p 不是q的充要条件;
4.类比定义
一般地,
若p==>q ,但qp,则称p是q的充分但不必要条件;
若pq,但q==>p,则称p是q的必要但不充分条件;
若pq,且qp,则称p是q的既不充分也不必要条件.
在讨论p是q的什么条件时,就是指以下四种之一:
①若p==>q ,但qp,则p是q的充分但不必要条件;
②若q==>p,但pq,则p是q的必要但不充分条件;
③若p==>q,且q==>p,则p是q的充要条件;
④若pq,且qp,则p是q的既不充分也不必要条件.
5.巩固练习:P14 练习第 1、2题
说明:要求学生回答p是q的充分但不必要条件、或 p是q的必要但不充分条件、或p是q的充要条件、或p是q的既不充分也不必要条件.
6.例题分析
例2:已知:⊙O的半径为r,圆心O到直线l的距离为d.求证:d=r是直线l与⊙O相切的充要条件.
分析:设p:d=r,q:直线l与⊙O相切.要证p是q的充要条件,只需要分别证明充分性(p==>q)和必要性(q==>p)即可.
证明过程略.
7.教学反思:
充要条件的判定方法
如果"若p,则q"与" 若p则q"都是真命题,那么p就是q的充要条件,否则不是.