解 设版心的高为x dm,则版心的宽为 dm,此时四周空白面积为
S(x)=(x+4)-128
=2x++8,x>0.
求导数,得
S′(x)=2-.
令S′(x)=2-=0,解得x=16(x=-16舍去).
于是宽为==8.
当x∈(0,16)时,S′(x)<0;
当x∈(16,+∞)时,S′(x)>0.
因此,x=16是函数S(x)的极小值点,也是最小值点.
所以,当版心高为16 dm,宽为8 dm时,能使海报四周空白面积最小.
反思与感悟 (1)在求最值时,往往建立函数关系式,若问题中给出的量较多时,一定要通过建立各个量之间的关系,通过消元法达到建立函数关系式的目的.
(2)在列函数关系式时,要注意实际问题中变量的取值范围,即函数的定义域.
跟踪训练1 如图所示,某厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为________米.
答案 32,16
解析 要求材料最省就是要求新砌的墙壁总长度最短,设场地宽为x米,则长为米,
因此新墙壁总长度L=2x+(x>0),则L′=2-.
令L′=0,得x=±16.
∵x>0,∴x=16.