C.①③④ D.①③
考点 四种命题的真假判断
题点 利用四种命题的关系判断真假
答案 D
(2)设a,b,c是非零向量,已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是( )
A.p或q B.p且q
C.(綈p)且(綈q) D.p或(綈q)
考点 "p或q"形式的命题
题点 判断"p或q"形式命题的真假
答案 A
解析 由向量数量积的几何意义可知,命题p为假命题;命题q中,当b≠0时,a,c一定共线,故命题q是真命题.故p或q为真命题.
反思与感悟 1.互为逆否命题的两命题真假性相同.
2."p与綈p"一真一假,"p或q"一真即真,"p且q"一假就假.
跟踪训练1 命题"若x2>1,则x<-1或x>1"的逆否命题是( )
A.若x2>1,则-1≤x≤1
B.若-1≤x≤1,则x2≤1
C.若-1
D.若x<-1或x>1,则x2>1
考点 四种命题
题点 四种命题概念的理解
答案 B
解析 条件与结论交换位置,并且分别否定.
类型二 充分条件与必要条件
命题角度1 充分条件与必要条件的判断
例2 (1)设x∈R,则"x2-3x>0"是"x>4"的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
(2)已知a,b是实数,则"a>0且b>0"是"a+b>0且ab>0"的( )