所以,所求切线的斜率为6,因此,所求的切线方程为即
例2、求曲线f(x)=x3-x2+5在x=1处的切线的倾斜角.
分析:要求切线的倾斜角,也要先求切线的斜率,再根据斜率k=tana,求出倾斜角a.
解:∵tana=
∵a∈[0,π,∴a=π.
∴切线的倾斜角为π.
例3.(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数
,根据图像,请描述、比较曲线在、、附近的变化情况.
解:我们用曲线在、、处的切线,刻画曲线在上述三个时刻附近的变化情况.
(1)当时,曲线在处的切线平行于轴,所以,在附近曲线比较平坦,几乎没有升降.
(2)当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.
(3)当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.
从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢.