2018-2019学年苏教版选修1-1 常用逻辑用语 教案
2018-2019学年苏教版选修1-1   常用逻辑用语    教案第3页

四种命题中有两对互为逆否的命题,分别是原命题和逆否命题,否命题和逆命题.由于互为逆否的命题同真假,则四种命题中,真命题的个数只能是0、2、4.

充分条件、必要条件的判定问题一直是高考的热点,可以说历年来每年必考.这是因为充分条件、必要条件很好地体现了数学上逻辑推理的纯粹性与完备性.另一原因是这一逻辑知识可以和本学 内的任一知识相联系、相结合.

正确理解充分条件、必要条件的定义是解题的关键,而理解定义的前提是分清命题的条件与结论.对于命题"p⇒q"来说,它可以有四种自然语言描述:(1)p是q的充分条件;(2)q是p的必要条件;(3)q成立的充分条件是p;(4)p成立的必要条件是q.只有深刻理解这四句话,才能做好这一类的题目.

全称命题与存在性命题的真假性判断是本章中的基础内容.判断全称命题的真假时,通常有两种方法:(1)定义法:对给定的集合的每一个元素x,p(x)都为真;(2)代入法:在给定的集合内找出一个x0,使p(x0)为假,则全称命题为假.判断存在性命题的真假时,通常用代入法:在给定的集合中能找到一个元素x,使命题p(x)为真,则为真命题,否则为假命题.

通常在对全称命题和存在性命题进行否定时,首先要判断所给命题是全称命题还是存在性命题,然后按照下面的规则进行否定:全称命题否定后,全称量词变为存在量词,肯定判断变为否定判断;存在性命题否定后,存在量词变为全称量词,肯定判断变为否定判断.

逻辑联结词的出现使得命题复杂化,对于一个较复杂的命题真假的判断,首先找出命题中所含的逻辑联结词,并将其分解成"简单命题+逻辑联结词"的形式,再根据真值表进行真假判断.