∀x∈M,p(x) ∃x0∈M,綈p(x0) ∃x0∈M,p(x0) ∀x∈M,綈p(x)
1.用"并集"的概念来理解"或",用"交集"的概念来理解"且",用"补集"的概念来理解"非"。
2.记忆口诀:(1)"p或q",有真则真;(2)"p且q",有假则假;(3)"非p",真假相反。
3.命题p∧q的否定是(綈p)∨(綈q);命题p∨q的否定是(綈p)∧(綈q)。
一、走进教材
1.(选修1-1P26A组T3改编)命题"∀x∈R,x2+x≥0"的否定是( )
A.∃x0∈R,x+x0≤0 B.∃x0∈R,x+x0<0
C.∀x∈R,x2+x≤0 D.∀x∈R,x2+x<0
解析 由全称命题的否定是特称命题知命题B正确。故选B。
答案 B
2.(选修1-1P18A组T1(3)改编)已知命题p:2是偶数,命题q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数是( )