六年级下册苏教版数学教研课《解决问题的策略》教案教学设计
六年级下册苏教版数学教研课《解决问题的策略》教案教学设计第2页

 教学过程:

一、布置要求,引导预学

  1.理解条件。

  下面的条件可以怎样理解?

  男生人数是总人数的2/5

  男、女生人数的比是2:3

  2.回顾策略

  从三年级上册起,每一册数学都教学一种策略,你们知道我们学了哪些策略?

  二、预习反馈,诊断查学

  1.老师指名让学生汇报预习情况。

  2.教师帮助回顾整理:依次是分析量关系的"从条件向问题推理"和"从问题向条件推理",帮助理解题意的"列表整理"和"画图整理",还有"枚举""转化""假设与替换"等策略。

  提问:这些策略你们都学会了吗?今天我们将合理的选择这些策略来解决新的问题,大家愿意接受挑战吗?

  三、目标引领,探究导学

  1.教学例1(课件出示例1)

   学生读题,自主完成。

  谈话:这是一个稍复杂的分数问题,除了用刚才我们做的方法来解决,你们能否用以前学的策略来思考呢?(引导学生进一步分析)

  小组交流方法。

  汇报交流情况,说说自己是怎么做的。(学生遇到困难可作适当的引导。)

  (1)画图分析,转化成简单的分数应用题。 通过画图,我们可以看出男生人数有2份,女生人数有3份,男生人数是女生人数的 2∕3。要求"男生有多少人?"就转化成了 求女生的2∕3是多少。

   学生列式解答:21×2∕3=14(人)

检验:全班:21+14=35(人) 男生:35×2∕5=14(人) 所以结果是正确的。

  (2)转化成比的知识来解决。

  分析:把"男生人数是总人数的2∕5"转化成男、女生人数的比是2:3。这道题就变成了:美术组有女生21人,男、女生人数的比是2:3,男生有多少人?

  让学生列式解答并对结果进行检验。

  (3)小结:①选择画图的策略,能使数量关系更直观,更清楚。②把分数转化成比,更容易理解数量之间的关系。

  谈话:通过刚才的汇报和交流看出大家都有各自的想法,那你们最喜欢哪一种方法呢?为什么呢?(让多名学生回答,征求各自的看法。)

  2.做第28页的"练一练"

  引导学生运用刚才学过的策略,用自己喜欢的方法来解决。

  要求学生说说"你选择了什么策略,是怎样想的"( 通过他们在交流中获得这些体验,让学生体会方法的多样性。)

  四、巩固练习,反馈练学

  1. 完成第30页练习五第1题。

  要求学生根据示意图里的数量关系,写出分数,并转化成比。或者写出比,再转化成分数。

  2. 完成第30页练习五第2题。

  根据已知的比或百分数,把线段图补充完整,要求借助线段图,把稍复杂的问题转化成简单的问题,探索原来问题的解法。

  3. 完成第30页练习五第3题。

  学生独立尝试解答,教师巡视、指导,指名不同解答方法的学生板演。

  全班交流解题策略和方法。

  五、课堂总结,拓展思学

  提问:通过今天的学习,你对应用策略有了哪些认识?还有什么体会? 板书设计:

  解决问题的策略

   1.画图的策略:能使数量关系更直观,更清楚。

           2.把分数转化成比:更容易理解数量之间的关系。 教后记: