y=sin x(x∈R)是周期函数.结论
探究点二 三段论推理中的易错点
例2 指出下列推理中的错误,并分析产生错误的原因:
(1)整数是自然数,大前提
-3是整数,小前提
-3是自然数.结论
(2)常数函数的导函数为0,大前提
函数f(x)的导函数为0,小前提
f(x)为常数函数.结论
(3)无限不循环小数是无理数,大前提
(0.333 33...)是无限不循环小数,小前提
是无理数.结论
解 (1)结论是错误的,原因是大前提错误.自然数是非负整数.
(2)结论是错误的,原因是推理形式错误.大前提指出的一般性原理中结论为"导函数为0",因此演绎推理的结论也应为"导函数为0".
(3)结论是错误的,原因是小前提错误.(0.333 33...)是循环小数而不是无限不循环小数.
反思与感悟 演绎推理的结论是否正确,取决于该推理的大前提、小前提和推理形式是否全部正确,因此,分析推理中的错因实质就是判断大前提、小前提和推理形式是否正确.
跟踪训练2 指出下列推理中的错误,并分析产生错误的原因:
(1)因为中国的大学分布在中国各地,大前提
北京大学是中国的大学,小前提
所以北京大学分布在中国各地.结论
(2)因为所有边长都相等的凸多边形是正多边形,大前提
而菱形是所有边长都相等的凸多边形,小前提
所以菱形是正多边形.结论
解 (1)推理形式错误.大前提中的M是"中国的大学",它表示中国的各所大学,而小前提中M虽然也是"中国的大学",但它表示中国的一所大学,二者是两个不同的概念,故推理形式错误.(2)结论是错误的,原因是大前提错误.因为所有边长都相等,内角也都相等的凸多边形才是正多边形.
探究点三 三段论的应用
例3 如图,在锐角三角形ABC中,AD⊥BC,BE⊥AC,D,E是垂足,求证:AB的中点M到点D,E的距离相等.